60 research outputs found

    Symmetric Determinantal Representation of Formulas and Weakly Skew Circuits

    Get PDF
    We deploy algebraic complexity theoretic techniques for constructing symmetric determinantal representations of for00504925mulas and weakly skew circuits. Our representations produce matrices of much smaller dimensions than those given in the convex geometry literature when applied to polynomials having a concise representation (as a sum of monomials, or more generally as an arithmetic formula or a weakly skew circuit). These representations are valid in any field of characteristic different from 2. In characteristic 2 we are led to an almost complete solution to a question of B\"urgisser on the VNP-completeness of the partial permanent. In particular, we show that the partial permanent cannot be VNP-complete in a finite field of characteristic 2 unless the polynomial hierarchy collapses.Comment: To appear in the AMS Contemporary Mathematics volume on Randomization, Relaxation, and Complexity in Polynomial Equation Solving, edited by Gurvits, Pebay, Rojas and Thompso

    The Limited Power of Powering: Polynomial Identity Testing and a Depth-four Lower Bound for the Permanent

    Get PDF
    Polynomial identity testing and arithmetic circuit lower bounds are two central questions in algebraic complexity theory. It is an intriguing fact that these questions are actually related. One of the authors of the present paper has recently proposed a "real {\tau}-conjecture" which is inspired by this connection. The real {\tau}-conjecture states that the number of real roots of a sum of products of sparse univariate polynomials should be polynomially bounded. It implies a superpolynomial lower bound on the size of arithmetic circuits computing the permanent polynomial. In this paper we show that the real {\tau}-conjecture holds true for a restricted class of sums of products of sparse polynomials. This result yields lower bounds for a restricted class of depth-4 circuits: we show that polynomial size circuits from this class cannot compute the permanent, and we also give a deterministic polynomial identity testing algorithm for the same class of circuits.Comment: 16 page

    Factoring bivariate lacunary polynomials without heights

    Full text link
    We present an algorithm which computes the multilinear factors of bivariate lacunary polynomials. It is based on a new Gap Theorem which allows to test whether a polynomial of the form P(X,X+1) is identically zero in time polynomial in the number of terms of P(X,Y). The algorithm we obtain is more elementary than the one by Kaltofen and Koiran (ISSAC'05) since it relies on the valuation of polynomials of the previous form instead of the height of the coefficients. As a result, it can be used to find some linear factors of bivariate lacunary polynomials over a field of large finite characteristic in probabilistic polynomial time.Comment: 25 pages, 1 appendi

    On the Probabilistic Query Complexity of Transitively Symmetric Problems

    Get PDF
    We obtain optimal lower bounds on the nonadaptive probabilistic query complexity of a class of problems defined by a rather weak symmetry condition. In fact, for each problem in this class, given a number T of queries we compute exactly the performance (i.e., the probability of success on the worst instance) of the best nonadaptive probabilistic algorithm that makes T queries. We show that this optimal performance is given by a minimax formula involving certain probability distributions. Moreover, we identify two classes of problems for which adaptivity does not help. We illustrate these results on a few natural examples, including unordered search, Simon's problem, distinguishing one-to-one functions from two-to-one functions, and hidden translation. For these last three examples, which are of particular interest in quantum computing, the recent theorems of Aaronson, of Laplante and Magniez, and of Bar-Yossef, Kumar and Sivakumar on the probabilistic complexity of black-box problems do not yield any nonconstant lower bound

    The Multivariate Resultant is NP-hard in any Characteristic

    Get PDF
    The multivariate resultant is a fundamental tool of computational algebraic geometry. It can in particular be used to decide whether a system of n homogeneous equations in n variables is satisfiable (the resultant is a polynomial in the system's coefficients which vanishes if and only if the system is satisfiable). In this paper we present several NP-hardness results for testing whether a multivariate resultant vanishes, or equivalently for deciding whether a square system of homogeneous equations is satisfiable. Our main result is that testing the resultant for zero is NP-hard under deterministic reductions in any characteristic, for systems of low-degree polynomials with coefficients in the ground field (rather than in an extension). We also observe that in characteristic zero, this problem is in the Arthur-Merlin class AM if the generalized Riemann hypothesis holds true. In positive characteristic, the best upper bound remains PSPACE.Comment: 13 page

    Decidable and undecidable problems about quantum automata

    Get PDF
    We study the following decision problem: is the language recognized by a quantum finite automaton empty or non-empty? We prove that this problem is decidable or undecidable depending on whether recognition is defined by strict or non-strict thresholds. This result is in contrast with the corresponding situation for probabilistic finite automata for which it is known that strict and non-strict thresholds both lead to undecidable problems.Comment: 10 page

    Model counting for CNF formuals of bounded module treewidth

    Get PDF
    The modular treewidth of a graph is its treewidth after the contraction of modules. Modular treewidth properly generalizes treewidth and is itself properly generalized by clique-width. We show that the number of satisfying assignments of a CNF formula whose incidence graph has bounded modular treewidth can be computed in polynomial time. This provides new tractable classes of formulas for which #SAT is polynomial. In particular, our result generalizes known results for the treewidth of incidence graphs and is incomparable with known results for clique-width (or rank-width) of signed incidence graphs. The contraction of modules is an effective data reduction procedure. Our algorithm is the first one to harness this technique for #SAT. The order of the polynomial time bound of our algorithm depends on the modular treewidth. We show that this dependency cannot be avoided subject to an assumption from Parameterized Complexity

    The set of realizations of a max-plus linear sequence is semi-polyhedral

    Get PDF
    We show that the set of realizations of a given dimension of a max-plus linear sequence is a finite union of polyhedral sets, which can be computed from any realization of the sequence. This yields an (expensive) algorithm to solve the max-plus minimal realization problem. These results are derived from general facts on rational expressions over idempotent commutative semirings: we show more generally that the set of values of the coefficients of a commutative rational expression in one letter that yield a given max-plus linear sequence is a semi-algebraic set in the max-plus sense. In particular, it is a finite union of polyhedral sets

    R'esolutions universelles pour des probl`emes NP-complets

    No full text
    F33.43> n ) sur R tels que le polynome a 0 + a 1 X + ::: + a n X n admette une racine r'eelle. Si ÂŻa = (a 0 ; :::; a n ), se demander si ÂŻ a 2 X 0 , c'est se demander si le polynome a 0 + a 1 X + ::: + a n X n admet une racine r'eelle. D'efinition : Un probl`eme X sur M est PM , i.e. polynomial pour la structure M , si la question ÂŻ x 2 X peut etre d'ecid'ee en temps polynomial. Le temps repr'esente le nombre d'op'erations (calcul de fonction ou test d'appartenance `a une relation) `a effectuer pour obtenir la r'epons
    • …
    corecore